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Since the kinetic and potential energy terms of the real-time nonlinear Schrödinger equation can each be
solved exactly, the entire equation can be solved to any order via splitting algorithms. We verified the fourth-
order convergence of some well-known algorithms by solving the Gross-Pitaevskii equation numerically. All
such splitting algorithms suffer from a latent numerical instability even when the total energy is very well
conserved. A detail error analysis reveals that the noise, or elementary excitations of the nonlinear Schrödinger
equation, obeys the Bogoliubov spectrum and the instability is due to the exponential growth of high-wave-
number noises caused by the splitting process. For a continuum wave function, this instability is unavoidable
no matter how small the time step. For a discrete wave function, the instability can be avoided only for
�tkmax

2 �2�, where kmax=� /�x.
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I. INTRODUCTION

Taha and Ablowitz �1� showed some time ago that the
first-order pseudospectral, split-operator method is a very
fast way of solving the nonlinear Schrödinger equation. Ban-
drauk and Shen �2� later applied higher-order splitting algo-
rithms with negative coefficients to solve the same equation.
They regarded the nonlinear potential as time dependent.
Since they can only estimate the intermediate-time nonlinear
potential to second order, it is not proven that their higher-
order algorithms actually converge at fourth or sixth order.
Recently Javanainen and Ruostekoski �3� have shown by
symbolic calculations that fourth-order algorithms are pos-
sible by use of the “latest” intermediate wave function in
evaluating the nonlinear potential. Strauch �4�, by construct-
ing a special operator that correctly propagates the nonlinear
potential term, proved that this use of the “latest” intermedi-
ate wave function is valid.

This work shows that �i� Javanainen and Ruostekoski’s
finding is a direct consequence of Taha and Ablowitz’ origi-
nal work and a much simpler proof than that of Strauch is
possible. �ii� The time-dependent potential method of Ban-
drauk and Shen and the time-independent approach sug-
gested by Javanainen and Ruostekoski both yielded identical
second-order algorithms but different higher-order algo-
rithms. �iii� It is verified numerically that algorithms derived
by the time-independent method do converge to fourth order
when solving the Gross-Pitaevskii equation. �iv� All such
splitting algorithms possess a latent numerical instability
which causes the energy of the wave function to eventually
blow up despite excellent total energy conservation for a
long time. �v� The instability is shown to be due to the ex-
ponential growth of high-wave-number noises intrinsic to the
splitting process. For a continuum wave function, this insta-
bility is unavoidable no matter how small the time step is.
For a discrete wave function, this can only be avoided if
�t�2� /kmax

2 , which forces �t to be very small if the dis-
cretization is very fine with a large kmas=� /�x. The next
three sections summarize how higher-order algorithms can
be systematically derived, and Sec. V discusses the instabil-
ity in detail.

II. SOLVING THE NONLINEAR
SCHRÖDINGER EQUATION

Consider the nonlinear Schrödinger equation defined by

i
��

�t
= �−

1

2
�2 + g���2�� . �1�

The free particle propagation can be solved exactly in opera-
tor form

���t� = e−i�tT̂��0� , �2�

where the operator T̂=− 1
2�2. Since T̂ is diagonal in k-space,

Eq. �2� is usually solved by fast Fourier transforms �FFTs�.
Surprisingly, as shown by Taha and Ablowitz, the potential
part of the equation

i
��

�t
= g���2� �3�

can also be solved exactly:

���t� = e−i�tg���0��2��0� . �4�

This is because Eq. �3� exactly conserves ���2 �multiply Eq.
�3� by �*, the complex-conjugated equation by �, and sub-
tract� and the nonlinear potential is just a constant in Eq. �3�.
This is also clear from Eq. �4�,

����t��2 = ���0��2, �5�

since ��0� is only multiplied by a phase. Equations �2� and
�4� are the basic building blocks for constructing splitting
algorithms for solving the nonlinear Schrödinger equation.
Equation �4� is the fundamental justification for using the
“latest” wave function in computing the nonlinear potential

�3�. �See also below.� Define a time-independent operator V̂
such that

V̂���t�� = g���t��2���t�� . �6�

That is, we define a time-independent operator V̂, whose ei-

genvalue is the nonlinear potential g���t��2. Note that V̂ only
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acts on ���t�� and does not act on its own eigenvalue g���t��2.
It follows that

e−i�tV̂���t�� = e−i�tg���t��2���t�� . �7�

The crucial point here is that V̂ has no time dependence;
when it acts on any ���t��, it produces the eigenvalue
g���t��2. The resulting time dependence of the nonlinear po-
tential is due entirely to the state vector ���t�� and not to the

operator V̂. The exact solution can then be written in operator
form as

���t�� = e−it�T̂+V̂����0�� . �8�

For our purposes here, we only need to know Eq. �7� and not

the explicit form of V̂. For an elegant, but rather abstract

construction of V̂, see Strauch’s �4� recent work.

III. DERIVING SPLITTING ALGORITHMS

To solve Eq. �8� by splitting algorithms, one factorizes the
evolution operator to any order with a suitable set of coeffi-
cients 	ti ,vi
 via

e��T̂+V̂� = �
i

e�tiT̂e�viV̂, �9�

where we have denoted �=−i�t. For example, we can have
the second-order algorithm 2A as

���t� = e�V̂/2e�T̂e�V̂/2��0� = e�g���2/2e�T̂e�g���0��2/2��0� ,

�10�

where according to Eq. �4� or �7�, we must take

� = e�T̂e�g���0��2/2��0� . �11�

Algorithm 2A only requires one pair of FFTs �forward and
backward� to achieve second-order accuracy, which is the
same number of FFTs needed for a first-order algorithm. If
the nonlinear potential is treated as a time-dependent poten-
tial, as done by Bandrauk and Shen �2�, then we would have
the algorithm �5,6�

���t� = e−i�tV��t�/2e−i�tT̂e−i�tV�0�/2��0� . �12�

In this case, since the last factor is only a phase,

V��t� = g����t��2 = g���2, �13�

the result is the same as Eq. �10�. If one ignores the time
dependence �7� and uses V��t�=V�0�=g���0��2, then algo-
rithm �12� is degraded to first order.

Similarly one has the second-order algorithm 2B,

���t� = e�T̂/2e�V̂e�T̂/2��0� = e�T̂/2e�g���2e�T̂/2��0� , �14�

where here

� = e�T̂/2��0� . �15�

In the time-dependent potential approach, one would have,
instead,

���t� = e−i�tT̂/2e−i�tV��t/2�e−i�tT̂/2��0� . �16�

One must now evaluate V��t /2�=g����t /2��2. Since the al-
gorithm is only second order, one can simply approximate
the midpoint wave function to first order,

���t/2� = e−i�tV��t/2�/2e−i�tT̂/2��0� , �17�

and therefore

����t/2��2 = �e−i�tT̂/2��0��2. �18�

Again, the result is the same as Eq. �14�
For fourth- and higher-order algorithms, the time-

dependent potential approach cannot be easily implemented.
It is much more efficient to use the “latest” intermediate
wave function than to estimate the intermediate-time wave
function to third or higher order. Thus higher-order algo-
rithms are currently possible only with the use of the time-
independent formalism based on the original finding of Taha
and Ablowitz.

The fourth-order Forest-Ruth �FR� �9� algorithm, which is
the triplet concatenation �8,10,11� of algorithm 2A,

TFR��� = T2A�c1��T2A�c0��T2A�c1�� , �19�

with c1=1 / �2−21/3� and c0=−21/3 / �2−21/3�, has been veri-
fied by Javanainen and Ruostekoski as obeying the “latest”
intermediate wave function rule. However, since this triplet
concatenation will convert any reversible, second-order
exponential-splitting algorithm to fourth order, verifying this
algorithm alone does not constitute an independent check on
more general fourth-order algorithms. �Recall that algorithm
2A can also be derived from the time-dependent approach
without explicitly invoking the “latest” wave function rule.�
�Javanainen and Ruostekoski have also verified the “latest”
wave function rule on a class of third-order algorithms inde-
pendent of 2A.� To seal this loophole in our verification pro-
cess, we also consider more general fourth-order algorithms
previously studied by McLachlan �12� with nine operators,

TM = ¯ exp��t0V̂�exp��v1T̂�exp��t1V̂�exp��v2T̂�exp��t2V̂� .

�20�

The factorization is left-right symmetric, and only operators
from the center to the right are indicated. The fourth-order
order condition requires �13� that

v1 =
1

2
− v2, t2 =

1

6
− 4t1v1

2, t0 = 1 − 2�t1 + t2� , �21�

w = �3 − 12t1 + 9t1
2, v2 =

1

4
�1 ��9t1 − 4 ± 2w

3t1
� ,

�22�

and that the free parameter t1	0. This algorithm requires
four pairs of FFTs but has a much smaller energy error and
greater stability than that of the FR algorithm. �The coeffi-
cient designation does not match the the operators because
the algorithm has been adapted from its classical version by
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interchanging T̂↔ V̂.� There are four solution branches for
v2. The choice of

t1 =
121

3924
�12 − �471�  − 0.299,

with

v2 =
1

4
�1 +�9t1 − 4 + 2w

3t1
� , �23�

reproduces McLachlan’s �12� recommended algorithm. By
varying t1 and using different branches of v2, it is possible to
optimize the algorithm for specific applications. For applica-
tion in the next section, the results are not very sensitive to
the branch of v2 or the choice of t1, as long as t1 is in the
range of �−0.1,−0.4�. More higher-order splitting algorithms
can be found in Refs. �14–17�.

IV. NUMERICAL VERIFICATIONS

To verify the order of convergence of these algorithms,
we apply them to the Gross-Pitaevskii equation with a har-
monic trap in one dimension �1D�,

i
��

�t
= �−

1

2

d2

dx2 +
1

2

2x2 + g���2�� . �24�

To gauge the accuracy of any algorithm, we monitor the
fluctuation of the total E,

E = �
−�

�

dx�*�t��−
1

2

d2

dx2 +
1

2

2x2 +

1

2
g���t��2���t� .

�25�

If the time evolution is exact, E would remain a constant. For

=1, g=5, and ��0�=�0�x�, the ground-state wave function
of the harmonic trap, the initital total energy is

E =
1

2
+

5

2�2�
 1.497 355 701. �26�

The x interval used is �−20:20� with 29=512 grid points.
The results are unchanged if one doubles the number of grid
points. In Fig. 1 we plot E as a function of time for algorithm
2A at �t=0.05 and �t=0.025. One observes that the energy
fluctuation at �t=0.025 is about 1 /4 of that at �t=0.05, as
befitting a second-order algorithm. The results for fourth-
order algorithms FR and M �McLachlan� at �t=0.05 are also
shown. It is clear that even if one take 1 /4 of algorithm 2A’s
error at �t=0.025, corresponding to �t=0.0125, that error is
still much larger than those of fourth-order algorithm FR and
M �i.e., running algorithm 2A 4 times at �t=0.0125, using
four pairs of FFTs, would still be inferior to algorithm FR
which uses only three pairs of FFTs�.

In Fig. 2 we greatly magnified the scale so that the fluc-
tuations in the fourth-order algorithms are also visible. This
time, when the step size of algorithm FR is half, the error in
E is reduced by a factor of 16, confirming the fourth-order
convergence of the algorithm. The energy error of algorithm

M at �t=0.025 is 10−6, which is too small for a visual
comparison.

In both Figs. 1 and 2, the total energy eventually blows up
for all calculations, despite the fact that total energy error is
only 10−6 for McLachlan’s algorithm. This instability is di-
rectly related to the strength of the nonlinear potential. The
rather large value of g=5 was chosen so that the instability
would show up after a short run. �See further discussion in
Sec. VI.�
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FIG. 1. �Color online� The fluctuation in the total energy E, Eq.
�25�, when solving the real-time Gross-Pitaevskii equation by
second-order algorithm 2A and fourth-order algorithms FR �Forest-
Ruth� and M �McLachhan�.
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FIG. 2. �Color online� A magnified view of the fluctuation in the
total energy of two fourth-order algorithms FR and M at two time-
step sizes.
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V. CAUSE OF INSTABILITY

The eventual instability as shown in Figs. 1 and 2 de-
mands an understanding of its fundamental cause. To study
this, we decompose the general wave function into Fourier
components and focus on the propagation of a single com-
ponent with wave vector p in 1D,

��x,t� = A eipx−i
t. �27�

This is a solution to Eq. �1� if 
 is given by


 =
1

2
p2 + g�A�2 = Ep + U , �28�

where we have denoted Ep= 1
2 p2 and U=g�A�2. Suppose now

the spatial part of � is contaiminated, due to numerical er-
rors, by very-small-amplitude, sideband wave vectors p+k
and p−k so that

��x� = A eipx + a ei�p+k�x + b ei�p−k�x; �29�

how will the error amplitudes a and b be propagated by
splitting algorithms? �This sideband analysis was inspired by
the classical work on Fourier analysis of nonlinearly inter-

acting waves �18�.� The effect of e−i�tT̂ on ��x� is trivial; all
amplitudes are multiplied by a phase,

A� = e−i�tEpA ,

a� = e−i�tEp+ka ,

b� = e−i�tEp−kb . �30�

To compute e−i�tV̂��x�, one must compute ���x��2 using Eq.
�29�. The result, by keeping terms only to first order in a and
b, is

A� = e−i�tUA ,

a� = e−i�tU�a − i�t�Ua + gA2b*�� ,

b� = e−i�tU�b − i�t�Ub + gA2a*�� . �31�

Thus the first-order splitting algorithm e−i�tV̂e−i�tT̂��x� modi-
fies the amplitudes by composing Eqs. �30� with Eqs. �31�,
yielding

An+1 = e−i�t�Ep+U�An, �32�

an+1 = e−i�t�Ep+k−Ek+U��ane−i�tEk

− i�tU�ane−i�tEk + �bne−i�tEk�*e−i2�n�� , �33�

bn+1 = e−i�t�Ep−k−Ek+U��bne−i�tEk

− i�tU�bne−i�tEk + �ane−i�tEk�*e−i2�n�� , �34�

where we have defined

An = �An�e−i�n. �35�

The algorithm correctly propagates A and preserves the norm
�A�,

An = e−in�t�Ep+U�A0. �36�

For notational clarity, we will take A0 to be real with �0=0 so
that we do not have to keep track of this initial phase, yield-
ing

�n = n�t�Ep + U� . �37�

�Keeping the initial phase simply transfers it to subsequent
amplitudes and has no bearing on the issue of instability.� To
see the growth in a and b, we factor out their overall phases
as follows:

an = e−in�t�Ep+k−Ek+U�n,

bn = e−in�t�Ep−k−Ek+U��n, �38�

and reduce Eqs. �33� and �34� to

n+1 = ne−i�tEk − i�tU�ne−i�tEk + ��ne−i�tEk�*� , �39�

�n+1 = �ne−i�tEk − i�tU��ne−i�tEk + �ne−i�tEk�*� . �40�

These two equations can also be interpreted as a first-order
splitting algorithm, with the “kinetic” term giving

� = e−i�tEk ,

�� = e−i�tEk� , �41�

and the “potential” term producing

� =  − i�tU� + �*� ,

�� = � − i�tU�� + *� . �42�

A closer examination reveals that Eqs. �41� and �42� are ex-
act solutions to the following equations:

i
d

dt
= Ek, i

d�

dt
= Ek� , �43�

i
d

dt
= U� + �*�, i

d�

dt
= U�� + *� . �44�

Thus the algorithm is trying to solve the original unsplit
equations

i
d

dt
= �Ek + U� + U�*,

i
d�

dt
= �Ek + U�� + U*, �45�

which have general solutions of the form

 = c e−i�kt + d ei�kt, �46�

with

�k = �Ek�Ek + 2U� . �47�

This is the famous Bogoliubov spectrum �19� of elementary
excitations in a uniform Bose gas. It shows up here because
the nonlinear Schrödinger equation is just the Gross-
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Pitaevskii equation for describing a uniform Bose-Einstein
condensate �20�. The Bogoliubov spectrum in the current
context is the background “noise” excitations of the nonlin-
ear Schrödinger equation. If one were able to solve Eqs. �45�
exactly via Eq. �46�, there would be no instability because
the amplitude of  in Eq. �46� is finite. However, when Eqs.
�45� are solved by splitting, Eqs. �42� no longer preserve the
norm and the modulus of these error terms at selected ranges
of k will grow exponentially.

To study this growth, take �0=0, so that the splitting
forms �41� and �42� simplify to

� = e−i�tEk , �48�

� =  − i�tU� + *� . �49�

Now we assert without giving a detailed proof that beyond
first order, for any splitting algorithm in solving the nonlin-
ear Schrödinger equation, the error Fourier components will
grow correspondingly according to splitting Eqs. �48� and
�49� with the same splitting coefficients. For example, corre-
sponding to algorithm 2A, the growth of the error Fourier
components is given by

1 = 0 − i
1

2
�tU�0 + 0

*� ,

2 = e−i�tEk1,

3 = 2 − i
1

2
�tU�2 + 2

*� . �50�

The subscripts here simply label the individual steps in the
algorithm. The last labeled value is the updated variable after
one time step. Denoting this updating as E2A��t�, the error
growth of the Forest-Ruth algorithm is then

EFR��t� = E2A�c1�t�E2A�c0�t�E2A�c1�t� �51�

and McLachlan’s algorithm as

1 = 0 − i�t2�t�U�0 + 0
*� ,

2 = e−i�v2�t�Ek1,

3 = 2 − i�t1�t�U�2 + 2
*� ,

4 = e−iv1�tEk3,

. . . . �52�

To verify the validity of our assertion, we run the normal
algorithm on an initial wave function having the p=0 com-
ponent with amplitude A=1 and all other Fourier compo-
nents set to e−25 at g=5 and �t=0.2. The resulting Fourier
amplitudes are then outputted every time steps for seven time
steps. Their modulus are shown as plus signs for the above
three algorithms in Figs. 3–5. Instead of plotting the magni-
tude of these Fourier amplitudes as a function of k, we plot
them as a function of �tEk /�, which is more revealing. Also
plotted as solid lines, are the predicted error amplitudes

given by Eqs. �50�–�52� for seven time steps. The perfect
agreement in all three cases confirms our assertion and our
sideband analysis.

To understand the pattern of instability as shown in Figs.
3–5, we rewrite the splitting forms �48� and �49� as matrices
acting on the real and imaginary part of ,

�R�

I�
� = T��t��R

I
�, �R�

I�
� = V��t��R

I
� , �53�

with

-30

-28

-26

-24

-22

-20

-18

-16

-14

0 1 2 3 4 5

ln
(|

a n
|)

∆tEk/π

FIG. 3. �Color online� The growth of the error Fourier ampli-
tudes due to algorithm 2A for seven time steps at g=5 and �t
=0.2. The plus signs denotes the algorithm’s actual output; the
seven solid lines are the predicted error from the sideband analysis
�50� for seven time steps. Centered on −28 is the algorithm’s C
function for predicting regions of stability and instability.
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FIG. 4. �Color online� Same as Fig. 3 but for the Forest-Ruth
algorithm. The predicted error is given by Eq. �51�.
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T��t� = � c s

− s c
�, V��t� = � 1 0

− 2u 1
� , �54�

and where we have defined

c = cos�x�, s = sin�x�, x = �tEk, u = �tU . �55�

The updating matrix corresponding to algorithm 2A is there-
fore

M2A��t� = V�1

2
�t�T��t�V�1

2
�t�

= � c − us s

�u2 − 1�s − 2uc c − us
� . �56�

This is a special form of a matrix with equal diagonal ele-
ments and unit determinant. This is due to the left-right sym-
metric form of the matrix product �i.e., the algorithm is time
reversible �21�� and that both T and V have unit determinant.
Such a matrix has the special property that its eigenvalue is
given by

e1,2 = C ± �C2 − 1, �57�

where C is just the diagonal element �or half of the trace of
the matrix�. If �C�	1, the eigenvalues are complex with unit
modulus and the algorithm is stable. If �C��1, the eigenval-
ues are real with one eigenvalue always greater than unity.
Thus by just plotting C against x=�tEk, one can immediately
determine the regions of instability. For algorithm 2A, we
have

C�x� = cos�x� − u sin�x� = C0 cos�x + �� , �58�

with

C0 = �1 + u2 and � = tan−1 u . �59�

It is then immediately clear that as long as u�0, the algo-
rithm is unstable for x in the interval �n�−2� ,n�� where
n=1,2 ,3 , . . .. At a fixed U, decreasing �t reduces u and �,
and hence the width of the instability region, but does not
remove the instability �but see further discussion in the next
section�. In Fig. 3, this C function is plotted and lowered to
−28 so that the interval where �C�x���1 can be directly com-
pared with the observed regions of instability. The peak in-
stability occurs at x=n�−� with the maximum eigenvalue

�e1,2� = �1 + u2 + �u . �60�

For �t=0.2 and U=5, we have u=1, �=� /4, and �e�=1
+�2. After seven iterations, the e-fold increase of the peaks
would be ln��1+�2�7�=6.169 62, which is the six e-fold in-
crease of amplitude observed in Fig. 3. Thus we have com-
pletely accounted for, both qualitatively and quantitatively,
the pattern of instability as shown in Fig. 3. The correspond-
ing C functions for the Forest-Ruth and McLachlan algo-
rithms are also plotted in Figs. 4 and 5. Their C functions are
too lengthy for a written display. �The analytical expression
for McLachlan’s C function is more than a page long using
Mathematica.�

By comparing Figs. 3 and 4, one sees that the Forest-Ruth
algorithm has a greater error growing rate than 2A. We will
see in the next section that this is precisely the reason why
the FR algorithm blew up earlier than 2A in Fig. 1. Finally,
as shown in Fig. 5, McLachlan’s algorithm manages to shift
the C function is such a way that the error peaks at x /�
=1,3 are nearly eliminated.

Further insights into the origin of this instability can be
gained by representing T��t� and V��t� in terms of traceless
matrices,

T��t� = exp��t� 0 Ek

− Ek 0
�� ,

V��t� = exp��t� 0 0

− 2U 0
�� . �61�

One can then immediately identify the unsplitted evolution
operator as

exp��t� 0 Ek

− Ek − 2U 0
�� = � cos��k�t� sin��k�t�

− sin��k�t� cos��k�t�
� ,

�62�

which is that of a harmonic oscillator with the Bogoliubov
spectrum �k. Were one able to split it alternatively as

T���t� = exp��t�0 Ek

0 0
�� ,

V���t� = exp��t� 0 0

− Ek − 2U 0
�� , �63�

one would recover the stability criterion normally associated
with the harmonic oscillator. For example, the corresponding
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FIG. 5. �Color online� Same as Fig. 3 but for McLachlan’s al-
gorithm. The predicted error is given by �52�.
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second-order algorithm 2A, V�� 1
2�t�T���t�V�� 1

2�t�, would
then yield a C function of

C = 1 −
1

2
�k

2�t2, �64�

which limits stability to �t�2 /�k, a well-known result. This
limit is actually worse than x��−2�, which, as U→0, is
�t�� /Ek. Our original splitting Eq. �61� is therefore better
than the usual harmonic oscillator splitting Eq. �63�. More-
over, in contrast to Fig. 3, the usual harmonic oscillator split-
ting would have no stable region whatsoever beyond �tEk
��!

In this section we have shown that the error-growing pat-
tern of any splitting algorithms when solving the nonlinear
Schrödinger can be analytically understood. The instability is
due to the exponential amplification of high-k noises at Ek
�� /�t.

VI. INSTABILITY OF THE GROSS-PITAEVSKII
WAVE FUNCTION

We now repeat the calculations of Fig. 1 at �t=0.05 for
1200 time steps to the point where the algorithm FR begins
to blow up. We plot in Figs. 6–8, the modulus of the k-space
wave function ���k�� as a function of �tEk /� at every 100th
time step. The initial Gaussian wave function is the straight
line seen plunging down close to vertical axis. Because of
limited numerical precision, that line levels off to some ran-
dom values around e−3510−16 at high Ek. These are the
initial random errors of the wave function. When the algo-
rithm acts on the wave funtion, these random errors are am-
plified successively and grow in time. For algorithm 2A, Fig.
6 shows error peaks at x /�=1, 2, and 4, which is in agree-
ment with Fig. 3, but no discernable peak is seen near x /�
=3. For the Forest-Ruth algorithm, Fig. 7 shows a prome-

nient peak at x /�=1, followed by a peak-shoulder structure
at x /�=2 and 4, in agreement with Fig. 4. For McLachlan’s
agorithm, Fig. 8 shows that the error peak at x /�=1 is con-
spicuously absent and only peaks at x /�=2,4 are visible.
This is in excellent agreement with the predicted error struc-
ture of Fig. 5. In the case of the Forest-Ruth algorithm, the
error peak at x /�=1 has grown sufficiently to distort the
wave function and cause the energy to blow up. These expo-
nentially growing error peaks are like ticking time bombs,
harmless at first, but eventually overwhelming and destroy-
ing the wave function.

For a continuum wave function, this instability is un-
avoidable as long as �t is finite. However, for a discrete
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FIG. 6. �Color online� The modulus of the Gross-Pitaevskii mo-
mentum wave function ���k�� at every 100th time step due to algo-
rithm 2A. The time-step size is �t=0.05.
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FIG. 7. �Color online� The modulus of the Gross-Pitaevskii mo-
mentum wave function ���k�� at every 100th time step due to
Forest-Ruth algorithm. This is the momentum wave function corre-
sponding to the energy calculation of Fig. 1 up to t=60.
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FIG. 8. �Color online� Same as Fig. 7 for McLachlan’s
algorithm.
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wave function defined at only N grid points, there is a loop
hole. For a finite-N-point calculation, the maximum k vector
is kmax=N� /L so that �tEk /� extends only out to
�0.05�0.5�512� /40�2 /�12.9, as shown in Figs. 6–8. Thus
one can take advantage of this and force stability by making
�t so small that

�tEk
max 	 xmin, �65�

where xmin is the smallest value of x such that �C�x��=1 and
Ek

max= 1
2kmax

2 . For most algorithms at small �t, xmin�. This
criterion �65� simply shrinks the entire range of Ek values to
below the first instability point. Thus the FR calculation
would be stable for �t	� / �0.5�512� /40�2�=0.0039. A
more refined calculation at higher N would required an even
smaller �t. Such a small �t would make long-time simula-
tions very time consuming. On the other hand, Eq. �65� also
implies that stability can be achieved by lowering kmax—i.e.,
using fewer grid points. For example, at N=128,
� / �0.5�128� /40�2�=0.062. When the FR algorithm is rerun
at �t=0.05 but with N=128, the total energy is indeed stable
out to t=300. However, the wave function now looked very
jagged. Thus, for long-time simulations, one muct choose �t
and N judiciously.

The instability observed here is very similar to the “reso-
nance” instability of multiple-time-step algorithms used in
biomolecular simulations �22�. There, stability requires that
�t	� /
, where 
 is the faster physical frequency in the
problem. The latency in the energy blowup has also been
observed in density functional calculations using split algo-
rithms �23�. The energy blowup there is more gradual, but it
is undoubtedly related to the nonlinear Kohn-Sham density
used, for which the nonlinear Schrödinger equation is the
simplest prototype.

VII. CONCLUSIONS

In this work we have shown how splitting algorithms of
any order can be devised to solve the nonlinear Schrödinger
equation. The key ingredient is the exact solution of the po-
tential equation �4�, as pointed out earlier by Taha and
Ablowitz �1�. This explains Javanainen and Ruostekoski’s
finding �3� without the need to construct Strauch’s special
operator �4�. Solution �4� clearly generalizes to the case
where g���2→v��� � �, implying that this class of general non-
linear equations can also be solved by splitting algorithms.

In the course of verifying these alogrithms by solving the
Gross-Pitaevskii equation, a latent instability is observed in
all the algorithms. This instability persists regardless of the
order of the algorithm and despite excellent total energy con-
servation. A detail error analysis reveals that this instability
is intrinsic to splitting algorithms and can only be avoided if
Eq. �65� is satisfied.

The main advantage of higher-order algorithms is that a
larger �t can be used for more efficient simulations. How-
ever, the stability criterion �65� dictates a small �t regardless
of order, thus negating much of the presumed advantage of
using higher-order algorithms. �Of course, higher-order algo-
rithm are useful for short-time simulations, where results can
be obtained prior to the blowup.� This work also suggests
that one must not use just any higher-order algorithm, such
as FR, but a higher-order algorithm with a higher xmin, such
as McLachlan’s algorithm. How algorithms can be derived
systematically with a higher xmin is a fitting subject for future
study.
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